Característica exponencial de un transistor bipolar

Si la tensión base-emisor de un transistor bipolar es la suma de una componente DC más una componente AC, $v_{BE} = V_{dc} + V_1 \cos \omega t$, y el valor medio de la corriente de colector es I_C , la corriente de colector del transistor, $i_C = I_S \exp(v_{BE}/V_T)$, se puede escribir como

$$i_C = I_S e^{V_{dc}/V_T} e^{x\cos\omega t} = I_C e^{x\cos\omega t}, \tag{1}$$

donde $x=V_1/V_T$ y $V_T=kT/q$ ($\approx 25\,\mathrm{mV}$ a temperatura ambiente). Si $x\to 0$,

$$i_C = I_C (1 + x \cos \omega t) = I_C + g_m V_1 \cos \omega t$$

donde $g_m = I_C/V_T$ es la transconductancia de pequeña señal del BJT.

La ecuación (1) es periódica con período $T=\omega/2\pi$ y, para valores arbitrarios de x, se puede expresar por su desarrollo en serie de Fourier¹

$$i_C = I_C \left[1 + \sum_{n=1}^{\infty} a_n(x) \cos n\omega t, \right]$$
 (2)

$$= I_C + G_m(x) V_1 \cos \omega t + \operatorname{armónicos}$$
 (3)

donde $G_m(x)$ es la transconductancia de gran señal. Si $x \to 0$, $G_m(x) \to g_m$.

La tabla siguiente muestra los primeros coeficientes de la serie de Fourier (2) y el cociente $G_m(x)/g_m$, donde

$$G_m(x) = g_m \, \frac{a_1(x)}{x}.$$

\boldsymbol{x}	$a_1(x)$	$a_2(x)/a_1(x)$	$a_3(x)/a_1(x)$	$G_m(x)/g_m$
0	0.000	0.000	0.000	1.0
0.1	0.099	0.024	_	0.999
0.5	0.485	0.124	0.010	0.970
1	0.893	0.240	0.039	0.893
2	1.396	0.433	0.134	0.698
5	1.787	0.719	0.425	0.357
10	1.897	0.854	0.658	0.190

Del análisis de esta tabla obtenemos las conclusiones siguientes:

1. Si x < 0.1, la distorsión es despreciable y la corriente de colector se puede expresar como

$$i_C \approx I_C + g_m V_1 \cos \omega t$$

2. Si x < 1, el primer armónico en la corriente de colector es proporcional a la señal de entrada pues $G_m(x) \approx g_m$ y, por tanto,

$$i_C \approx I_C + q_m V_1 \cos \omega t + \text{armónicos}$$

¹Este análisis se ha sacado de las páginas 104-109 del libro de **K. K. Clarke, D. T. Hess**. *Communication Circuits: Analysis and Design*, Addison-Wesley, Reading, Mass., 1971.

Característica diferencial

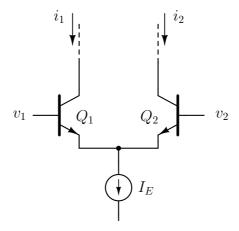
Si la tensión aplicada entre las bases de los transistores del par diferencial de la figura es $v_d = v_1 - v_2 = V_1 \cos \omega t$, la corriente de colector de los transistores se puede escribir como $i_1 = I_E/2 + \Delta i$, e $i_2 = I_E/2 - \Delta i$, donde²

$$\Delta i = I_E \sum_{k,\text{impar}}^{\infty} a_k(x) \cos k\omega t, = G_m(x) V_1 \cos \omega t + \text{armónicos impares}, \tag{4}$$

 $x=V_1/V_T, V_T=kT/q$ (= $25\,\mathrm{mV}$ a temperatura ambiente), y

$$G_m(x) = \frac{4a_1(x)}{x} g_m.$$

La transconductancia de pequeña señal del diferencial (no confundir con la transconductancia del transistor) es $g_m = I_E/4V_T$. Para valores de $x \le 1$, o $V_1 \le 25 \,\mathrm{mV}$, $G_m \approx g_m$.



La tabla siguiente muestra los coeficientes más importantes de la serie de Fourier de la corriente Δi .

\overline{x}	$a_1(x)$	$a_3(x)$	$a_5(x)$
0	0.0000	0.0000	0.0000
0.5	0.1231	_	_
1	0.2356	-0.0046	_
1.5	0.3305	-0.0136	_
2	0.4058	-0.0271	_
2.5	0.4631	-0.0435	0.0023
3	0.5054	-0.0611	0.0097
4	0.5586	_	_
5	0.5877	-0.1214	0.0355
7	0.6112	-0.1571	0.0575
10	0.6257	-0.1827	0.0831

Del análisis de esta tabla obtenemos las conclusiones siguientes:

1. No hay armónicos pares.

²Este análisis se ha sacado de las páginas 114-119 del libro de **K. K. Clarke, D. T. Hess**. *Communication Circuits: Analysis and Design*, Addison-Wesley, Reading, Mass., 1971.

2. Si x < 0.5, la distorsión es despreciable y el cambio en la corriente de colector se puede expresar como

$$\Delta i \approx g_m V_1 \cos \omega t$$

donde g_m es la transconductancia del par diferencial, que es la mitad que la de cada uno de sus transistores.

3. Si x < 1, el primer armónico en la corriente de colector es proporcional a la señal de entrada pues $G_m(x) \approx g_m$ y, por tanto,

$$\Delta i \approx g_m V_1 \cos \omega t + \text{armónicos}$$

Circuito resonante paralelo RLC

La figura muestra un circuito resonante RLC paralelo. Su impedancia Z(s) viene dada por

$$Z = \frac{(1/C)s}{s^2 + s/RC + 1/LC}$$

Si el factor de calidad del circuito RLC paralelo es muy grande, $Q\gg 1$, la magnitud de la impedancia del circuito a la frecuencia resonante ω_0 , $|Z(j\omega_0)|$, es, en general, mayor que la magnitud de la impedancia a múltiplos de ω_0 , $|Z(jn\omega_0)|$, donde $n=2,3,\ldots$ En este caso,

$$\frac{|Z(jn\omega_0)|}{|Z(j\omega_0)|} \approx \frac{n}{(n^2 - 1)Q}.$$

Recuerde que el Q del circuito resonante es el cociente entre la frecuencia central y su ancho de banda.

